Peloruside A is a microtubule-stabilizing agent with exceptional anti-migratory properties in human endothelial cells
نویسندگان
چکیده
Peloruside A is a novel antimitotic drug originally isolated from the marine sponge Mycale hentschieli. Previous studies showed that peloruside A stabilizes microtubules by binding to a site on tubulin distinct from paclitaxel, another microtubule stabilizing drug. Peloruside A blocks mitosis, but little is known about the effects on other cellular activities. Here we report that peloruside A is the most potent microtubule inhibitor yet tested for its ability to block endothelial cell migration. Quantitative analysis indicated that it inhibits microtubule dynamics and endothelial cell migration at 1/200(th) of the concentration needed to inhibit cell division (the cytotoxic concentration), indicating that it could potentially have a large margin of safety when used to specifically target angiogenesis. By comparison, paclitaxel, a well-known cancer therapeutic drug, suppresses cell migration at 1/13(th) of its cytotoxic concentration; and vinblastine suppresses cell migration at just slightly below its cytotoxic antimitotic concentration. Thus, different microtubule targeted drugs have varying relative potencies for inhibition of cell migration versus cell division. The results suggest that peloruside A may be an especially useful agent for anti-angiogenesis therapy and point to the likelihood that other antimitotic drugs might be found with an even larger potential margin of safety.
منابع مشابه
Peloruside A, a novel antimitotic agent with paclitaxel-like microtubule- stabilizing activity.
Peloruside A is a novel secondary metabolite isolated from a New Zealand marine sponge, Mycale hentscheli, that has potent paclitaxel-like microtubule-stabilizing activity and is cytotoxic at nanomolar concentrations. Its 16-membered macrolide ring is similar to that of epothilone, a drug currently under clinical investigation as an anticancer agent. Like paclitaxel, peloruside A arrests cells ...
متن کاملZampanolide, a Microtubule-Stabilizing Agent, Is Active in Resistant Cancer Cells and Inhibits Cell Migration
Zampanolide, first discovered in a sponge extract in 1996 and later identified as a microtubule-stabilizing agent in 2009, is a covalent binding secondary metabolite with potent, low nanomolar activity in mammalian cells. Zampanolide was not susceptible to single amino acid mutations at the taxoid site of β-tubulin in human ovarian cancer 1A9 cells, despite evidence that it selectively binds to...
متن کاملPeloruside A does not bind to the taxoid site on beta-tubulin and retains its activity in multidrug-resistant cell lines.
Peloruside A (peloruside), a microtubule-stabilizing agent from a marine sponge, is less susceptible than paclitaxel to multidrug resistance arising from overexpression of the P-glycoprotein efflux pump and is not affected by mutations that affect the taxoid binding site of beta-tubulin. In vitro studies with purified tubulin indicate that peloruside directly induces tubulin polymerization in t...
متن کاملMicrotubule-Stabilizing Drugs from Marine Sponges: Focus on Peloruside A and Zampanolide
Marine sponges are an excellent source of bioactive secondary metabolites with potential therapeutic value in the treatment of diseases. One group of compounds of particular interest is the microtubule-stabilizing agents, the most well-known compound of this group being paclitaxel (Taxol), an anti-cancer compound isolated from the bark and leaves of the Pacific yew tree. This review focuses on ...
متن کاملPeloruside- and laulimalide-resistant human ovarian carcinoma cells have βI-tubulin mutations and altered expression of βII- and βIII-tubulin isotypes.
Peloruside A and laulimalide are potent microtubule-stabilizing natural products with a mechanism of action similar to that of paclitaxel. However, the binding site of peloruside A and laulimalide on tubulin remains poorly understood. Drug resistance in anticancer treatment is a serious problem. We developed peloruside A- and laulimalide-resistant cell lines by selecting 1A9 human ovarian carci...
متن کامل